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Abstract

Learning to teach mathematics for understanding is not easy. First, practice itself is
complex. Second, many teachers’ traditional experiences with and orientations tc
mathematics and its pedagogy are additional hindrances. This paper examines the territory
of practice and reviews some of what we know about those who would traverse
it—prospective and experienced elementary teachers. In analyzing practice, the author
focuses on one major aspect of teacher thinking in kelping students learn about fractions:
the construction of instructional representations. Considerations entailed are analyzed and
the enactment of representations in the classroom is explored. The term representational

context is used to call attention to the interactions and discourse constructed in a classroom.

around a particular representation. The author provides a window on her own teaching
practice in order to highlight the complexity inherent in the joint construction—with
students—of fruitful representational contexts. The paper continues with a discussion of
prospective and experienced teachers’ knowledge, dispositions, and patterns of thinking
relative to representing matiematics for teaching. The author argues that attempts to help
teachers develop their practice in the direction of teaching mathematics for understanding
requires a deep respect for the complexity of such teaching and depends on taking teachers
seriously as learners.
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HALVES, PIECES, AND TWOTHS: CONSTRUCTING .
REPRESENTATIONAL CONTEXTS IN TEACHING FRACTIONS'

Deborah Loewenberg Ball ’ 3

Goals of Teaching and Learning Matheinatics

Current discourse about the desirable ends of mathematics teaching and learning
centers on the development of mathematical understanding and mathematical power—the
capacity to make sense with and about mathematice (cf. California State Department of
Education, 1985; National Council cf Teachers of Mathematics, 1989a; Mational Reséarch
Council, 1989). Learning mathematics with understanding, azcordinig to this view, entails
making connections between informal understandings—about mathematical ideas, "
quantitative and spatial patterns, and relationships—and more formal mathematical ideas.
Connections must be forged among mathematical ideas (Fénnema, Carpenter, and Peterson,
1989). Students must develop the tools and dispositions to frame and solve problems, reason
mathematically, and communicate about mathematics (National Council of Teachers of -
Mathematics, 1989a).

These goals go beyond understanding of particular ideas—place value, functions,
triangles, area measurement. "Knowing mathematics” includes knowing how to do
mathematics: "To know mathematics is to investigate and express relationships among
patterns, to be able to discern patterns in complex and obscure contexts, to understand and
transform relationships among patterns” (National Research Council, 1990, p. 12). Included
in this view of understanding mathematics also are ways of seeing, interpreting, thinking,
doing, and communicating that are special to the community, of mathematicians. These
specialized skills and ways of framing and solving -problems can. contribute to- everyday
confidence and competence; they are personally as well as intellectually empowering.
Schoenfeld (1989) summarizes this dimension of mathematical kmowledge:

IR I

Learning to think mathematically means (a) developing a mathematical point
of view—valuing the process of mathematization and abstraction and having
the predilection to apply them, and (b) developing competence with the tools
of the trade, and using those tools in the service of understanding
structure—mathematical sense-making. (p. 9)

This sense-making is both individual and consensual, for mathematical knowledge is socially |
constructed. and validated. Drawing mathematically reasonable conclusions involves the ;

c “This will appear as a chapter in T. P. Carpenter and E. Fennema (Eds.), Leaming, Teaching, and Assessing Rational Number
MCEDIS.

?Deborah Loewenberg Ball, assistant professor of teacher education at Michigan State University, is & senior researcher with
the Nationzl Center for Research on Teacher Education.
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capacity to make mathematically sound arguments to convince oneself and others of the
plausibility of a conjecture or sg:ution. It also-entails the capacity to appraise and react to
others’ reasoning and to be willing to change one’s mind for good reasons.

An Epistemology of Teaching Mathematics for Understanding

Contemplating Content and Students

Helping students develop this kind of mathematical power depends on insightful
consideration of both content and learners, consideration that is both general and siti: .’ed.
Figuring out how to help students develop this kind of mathematical knowledge depends on
a careful analysis of the specific content to be learned: the ideas, procedures,.and ways of
reasoning. Such analyses must examine the particular: Probability, for instance, is a domain
that differs in some important ways from number theory, both in the nature of the ideas
themseives and in their justification, as well as in the kinds of reasoning entailed. Similarly,
an argument in geometry is distinctive from one in arithmetic. Differences in how a given
topic evolved may also be useful in considering how students may encounter and develop its
ideas: That it took the mathematical community centuries to accept negative numbers in

a "felt way" (Kline, 1970) may heip to explain students’ struggles to make sense of quantities
that are less than zero (Ball, 1990b).

But analyzing the. content—concepts and ways of knowing—is insufficient. Helping
students develop the kind of knowledge described above aiso depends crucially on
understandings of students themselves and how they learn the particular content. Careful
analyses of the content cannot suffice to map the terrain through the eyes of tky prospective
child-explorer. As Dewey (1902) puts it aptly, “The map does not take the place of the
actual journey” (p. 20). The teacher must simultaneously maintain a complex and wide-
angled view of the territory, all the while trying to see it through the eyes of the learner
exploring it for the first time (Lampert, in preparation). How does the mathematics appear
to a pineyear-old? Nine.year-olds’ ideas and ways of thinking approach formal
mathematical ideas and ways of thinking unpredictably and, at timies, with breathtaking
elegance. Teachers, argues Hawkins (1972), must be able to "sense when a child’s interests
and preposals . . . are taking him near to mathematically sacred ground” (p. 113). This
bifocal perspective—perceiving the mathematics through the mind of the learner while
perceiving the mind of the learner through the mathematics—is central to the teacher’s role
in helping students learn with understanding.
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Representational Contexts for Learning Mathematics

But this contemplation of content and students is not passive. The teacher is not, as
Hawkins (1972), points out, simply an observer; the teacher’s role is to participate in
students’ development:

As a diagnostician, the teacher is trying to map into his own the momentary
state and trajectory of another mind and then, as provisioner, to enhance (not
replace) the resources of that mind from his own store of knowledge and skill.

(. 112)

In order to help students develop mathematical understanding and power, the teacher
must select and construct models, examples, stories, illustrations, and -problems that can
foster students’ mathematical development. Lampert (1989) writes of the need to select a
representational domain with which the children are familiar and in which they are
competent to make sense—in other words, in which they can extend and develop their
understandings of the ideas, as-well as their capacity to reason with and about those ideas.
For instance, because students are familiar with relationships among pennies, dimes, and
dollars, and because they are comfortable with the notation, Lampert argues that money may
provide one helpful terrain in which they can exwnd their understanding of decimal
numeration. Dewey (1902) writes:

What concerns [the teacher] is the ways in which that subject may become part
of experience; what there is in the child’s present that is usable in reference
to it; how such elements are to be used; how his own knowledge of the subject-
matter may assist in interpreting the child’s need and doings, and determine the
medium in which the child should be placed in order that his growth may be
properly directed. [The teacher] is concerned, not with the subject-matter as
such, but with the subject-matter as a related factor in a total and growing
experience. (p. 23, emphasis added)

The issue of selecting, developing, anc shaping instructional represeatations has been
the focus of a wide range of inquiry (e.g, Ball, 1988; Kaput, 1987, 1988; Lampert, 1986,
1989; Lesh, Behr, and Post, 1987; Lesh, Post, and Behr, 1987, McDiarmid, Ball, and

. Anderson, 1989; Wilson, 1988; Wilson, Shulman, and Richert, 1987). Shulman (1986) and

his colleagues (Wilson, Shulman, and Richert, 1987) have developed a construct which they
call pedagogical content knowledge: an “"amalgam"” of knowledge of subject matter and
students, of knowledge and lecarning.  Pedagogical content knowledge includes
understandings  -out what students find interesting and ditficult as well as a repertoire of
representations, tasks, and ways of engaging students in the content. Nesher (1989) frames
the problem for the teacher of mathematics in terms of two main needs: “(a) the need for

3




a young child to construct his knowledge through interaction with the environment, and (b) k
the need to arrive at mathematical truths" (p- 188). The teacher must structure what Nesher B
calls a "learning system"—in which learners can explore and test mathematical ideas.
Nesher’s framework reminds us that the representation of ideas is more than just a catalog 4
of ideas or a series of models—rather it is interactive and takes place within a larger context :
of ideas, individuals, and their discourse. ‘

Dewey’s (1902) problem of "determining the medium,"” or weaving what I will call a
representational context in which children can do—explore, test, reason, and argue
about—and consequetly, learn, particular mathematical ideas and toois is at the heart of
the difficult work of teaching for understanding in mathematics. Such representational v
contexts must balance respect-for-the integrity and spirit of mathematics with an equal and
serious respect for learners, serving as an "anchor” for the development of learners’ "
mathematical ideas, tools, and ways of reasoning. These contexts must provide rich
opportunities for both individual and group discourse. All this sounds both serisible and
elegant—pulling it off, however, is difficult.

Learning to Teach Mathematics for Understanding

Learning to teach mati:omatics for understanding is not easy. This paper examines
two reasons for this. First, practice itself is complex. Constructing and orchestratiag fruitful
representational contexts, for example, is inherently difficult and uncertain, requiring
considerable knowledge and skill. Second, many teachers’ traditional experiences with and
orientations to mathematics and its pedagogy hinder their ability to conceive and enact a
kind of practice that centers on mathematical understanding and reasoning and that situates
skill in context. Helping teachers develop their practice in the direction of teaching
mathematics for understanding requires a deep respect for the complexity of such teaching
and depends on taking teachers seriously as learners. In this paper I explore and provide
evidence for this claim.

Creating and Orchestrating Fruitful Kepresentationa} Contexts®
The deliberations entailed in constructing a viable representational context draw on
multiple kinds of knowledge: of the mathematical content, of students and how they learn,

- of the particular setting.

4
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Considering the content. Substantively, a representation. should make prominent
conceptual dimensions of the content at hand, not just its surface or procedural
characteristics. Important to bear in mind is that répresentations are metaphorical,
borrowing méaning from one domain to clarify or illuminate somsthing in another. As with
metaphors—where objects are never isomorphic with their comparative
referents—mathematical ideas are by definition broader than any specific representation.
For example, area models—such as a circle model of 1/2:

N ),

represent only one of several meanings of fractions (Ohlsson, 1988). Despite the fact that
this is the most frequent representation that children will give if asked what one-half means,
1/2 also refers to the point halfway between 0 and- 1 on a number line, the ratio of one day
of sunshine to every two of clouds, or the probability of getting one true-false test item right.

No representational context is perfect. A particular representation may be skewed
toward one meaning of a mathematical idea, obscuring other, equally important ones. For
example, the number line as a context for exploring negative numbers highlights the
positional or absolute value aspect of integers: thai -5 and 5 are each five units away from
0. It does not necessarily help students come to grips with the idea that -5 is less than S.
Using bundling sticks to explore multidigit addition and subtraction directs attention to the
centrality of grouping in place value, but may hide the importance of the positional nature
of our decimal number system.

Beyond the subsance of the topic itself, anothe: iayer of complexity rests with the fact
that represent- tion is fundamental to mathematics itself (Kaput, 1987; Putnam, Lampert, and
Peterson, 1990). One power of mathematics lies in its capacity to represent important
reiationships and patterns in ways that enable the knower to generalize, abstract, analyze,
understand. Learning to represent is therefore a goal of mathematics instructior, not just
a means to an end. The teacher must figure out ways to help students learn to build their
own models and representations—of real world phenomena as well as of mathematical ideas

(Putnam, Lampert, and Peterson, 1990).

In teaching fractions, the teacher must weigh the relative advantages in providing
students with structured representational materials (such as fraction bars that are already
ruled into certain fixed partition sets) versus having students refine existing models and
develop their own representational inedia (e.g., drawing circular regions and suodividing
portions thereof). Take the idea of unit, which is central to fraction knowledge. If stadents
are comparing 4/4 witk 4/8, fraction bar s will force them to the right answer that 4/4 is
more than 4/8: '




Taey do not have to consider directly the role of the comraon unit, for it is implicit within

the material. Yet, if students construct their own models, they may confront and have to
struggle with this essential concept, as one nine-year-old did when he drew, at first;

Iy e A

This drawing made it seem as though 4/4 might be equal to 4/8 and he and his
<lassmates struggled with the question of whether the rectangles had to be the same size in
order to compare two fractions. One classmate asserted that they did, because otherwise,
"your drawing would convince you of something that wasn’t true—four-fourths is really more
than four-eighths." Another student, however, argued that it didn’t really matter how big you
made the rectangles because you could see that 4/4 took up all of the rectangle, while 4/8
took up only half of it. This valuable discussion would probably have never come up if the
students were using fraction bars.

Fruitful representational contexis are framed clearly enough to facilitate the
development of sound mathematical understandings and skill in students. Fractinn bars, pie
diagrams, number lines—all these can help to focus learners on certain key features of
fractions, such as the meanings of fractional terms. At the same time, the context is
sufficiently open to afford students oppurtunities to explore—to make conjectures aud follow
important mathematical tangents. The example above suggests that there are times for
letting learners confront and grapple with conceptual complexity (cf. National Council of
Teachers of Mathematics, 1989b). Managing a suitable tension between focus and openness
in the representational context is crucial.

Considering strJents and how they learn. Beyond mathematical considerations,
another layer of contemplation emerges in considering what students understand and how
they learn. Nesher (1989) points out that "the child should be familiar with the exemplifying
objects and be able to use familiar language to describe and communicate relations among
these objects" (p. 194). Certain representational contexts, although mathematically

611




reasonable, are nevertheless inaccessible to students (Dufour-Janvier, Bednarz, and Belanger,
1987). For example, although electrical charges may provide a mathematically promising
model for the multiplication of negative numbers, sixth graders are. as unfamiliar with the
behavior of electricity as they are with the behavior of negative numbers. As such,
electricity will not make an accessible representation for teaching about negative numbers.
Other representational contexts, while engaging and accessible- to students, are
mathematically distorting or thin. For example, the everyday idea of borrowing may distract
students from regrouping and place value two-digit subtraction, and may encourage them to
think of numbers in the right hand column "berrowing” equal-sized numbers from the next
column.* -

Putting representational contexts into use. Representational contexts are not static
and do not stand alone. They offer "thinking spaces" for working on ideas. In order to be
viable and useful, these thinking spaces must be furnished and developed jointly by teachers
and students. Language, conventions, and other mental props are necessary. For example,
althoughh money and debt may seem—to adults—potentially helpful in making sense of
negative numbers and operations on the integers, nine-year-olds may not be inclined to
reconcile debt with cash to obtain a figure of "net worth." Rather than reporting a balance
of -$4, my third graders were disposed to report that "so-and-so owes his friend $6 and also
has $2 in his pocket,” thereby avoiding using negadve numbers at all. Thus, exploiting. the
representation successfully requires figuring out conventions for its use. I worked to find :
languzge and stories that would encourage students to represent debt differently from R
money—and to waat to reconcile the two (see Ball, 1990a).

Similarly, the third graders described above had to construct conventions aznd
language for using rectangles (which were often representations of brownies or gratiam ’
crackers) to represent, compare, and operate with fractions. To represent fractions, they
developed strategies for making the drawings: Sean conjectured—and others agreed—that
"to make some number of pieces, make one less line." In other words, to make thirds, draw
two lines in your rectangle. Acknowledging that no one could draw perfectly equal pieces,
the children had to agree how fussy to be about the pieces looking equal. They also
struggled witls whether the rectangles had to be the same size in order to compare them,

_ and what it would meaa to try to combine two different fractional quantities. Real-world
concerns sometimes collided with the mathematical viability of the representation. For
example, is 3/3 greater than, less than, or the same amount as 5/5? Some children argued
that 3/3 was more because each piece (one-third) was bigger. Otiers argued that 5/5 was
more because there were more pieces. Still others thought that they were the same because
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“In Bali (1968), I describe how prospective teachers trying to find representational contexts ior teaching about regrouping
actually thought "borrowing™ was a fruitful regresentation for subtraction because children would be familiar with borrowing
from neighbors. See below for a discussion of learning to deliberate about representation in pedagogically defensible ways.
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each represented one whole brownie. For these rectangles to offer a fruitful thinking space
for children to explore fractions, the representation must be embedded with agreements
about what "more" or "greater” means—that it is the total quantity, not the number or size
of the pieces. ‘

These thinking spaces are broadened—and the accompanying issues expanded—when
multiple representational contexts cre used for a given topic. Teachers and students must
work through the links among them and how one moves from one to another. For example,
using the number line to compare 3/3 with 5/5 presented few problems: The two were
obviously the same. But how that relates to rectangle drawings is not a straightforward
matter for learners. If students conclude, using the number line, that 3/3 is the same
amount as 5/5, they may still think that one is more than the other when using rectangle
drawings. Similarly, some children decided that 2/4 + 2/4 = 4/4, or 1, when they work
with the number line—but that it equals 4/8 when they use a regional model:

This conclusion arises, not out of a failure of the representation itself, but from lack
of agreement about how to use it. The students who argued that this drawing showed that
2/4 + 2/4 = 4/8 reasoned as follows: There are eight pieces total and four of them are
shaded. This representation matched the students’ assumption that, t, add two fractions,
one would add the numerators and denominators—a fact that unly reinforced their
conviction that what they had done made sense. To reason about addition of fractions using
such area models requires that one agree to hold the unit constant (Leinhardt and Smith,
1985). If the unit is one rectangle, then 2/4 of one rectangle and 2/4 of another rectangle
will fill up one whole rectangle, or 4/4. The students who believed the answer to be 4/8
were looking at two sandwiches as the unit.

The conventions, language, and stories that suppert the use of a given
representational context are crucial to building valid understandings and connections. In this
case, the teacher could pose a story situation that wouid provoke students to consider the
importance of maintaining the unit—for example: "Marta ate 2/4 of a sandwich at noon and
2/4 of a sandwich after school. How much did she eat?" Students might be able to discuss
that she ate the equivalent of one whole sandwich or four quarters of sandwich. They could
also discuss the notion at she has eaten 4/8 of two sandwiches—and thereby reach some
agreement on the importance of identifying the unit—and of choosing a useful unit.




Teaching as inquiry. Teaching is essentially an ongoing inquiry into content and
learners, and into ways that contexts can be structured ‘o facilitate the development of
learners’ understardings. Representations are conjechires about teaching and learning,
founded. on the evolving insights about the children’s thinking and deepening understanding
of the mailicinatics, and one must inform the other .in the construction and use of
representational contexts. In this paper, I examine the pedagogical thinking and work
involved in understanding, constructing, and exploiting representational contexts for learning
mathematics. My thesis is that deliberating about the construction and use of such contexts
is at the core of teaching mathematics for understanding. Finely tuned analysis of the
content, as well as rich knowledge about students and how they make sense of that content,
can and should play a central role in teacher thinking and practice.

To illustrate some of the complexities in thinking tirough and using representatiozs
of mathematical ideas, I will draw examples from my own teaching. Using myself as the
object and tool of my own inquiry within and about t¢aching mathematics for understanding,
I teach mathematics daily to a heterogeneous group of third graders at a local public
elementary school. Ma: 7 students are from other countries and speak limited English; the
American students are diverse ethnically, racially, and socioeconon:ically, and come from
many parts of the United States. Sylvia Rundquist, the teacher in-whose classroom I work,
teaches all the other subjects besides mathematics. She and I meet regularly to discuss
individual students, the group, what each of us is trying to do, the connections and contrasts
between our practices. We also spend a consideratle amount of time discussing and
unpacking mathematical ideas, analyzing representations gemerated by the students or
introduced by me, and examining the children’s learning.

Every class is audiotaped and many are videotaped as well. I write daily in a journal
about my thinking and work, and students’ notebooks and homework are photocopied.
Students are interviewed regularly, sometimes informally, sometimes more formally;
sometimes in small groups and sometimes alone. We have also experimented with the
methodology of whole-group interviews. I give quizzes and homework that complement
interviews and classroom observations with other evidence of students’ understandings. This
paper draws on data from my teaching of fractions during 1989-90.°

Currently, Magdaleae Lampert and I are engaged in an NSF-funded project to produce and explcre the use of hypermedia
materials in teacher education (Lampert and Ball, 1990). Our aim is to construct a representational context for learning (o teach
in which teachers would develop new ideas and ways of thinking, new questicns and things to consider, aad new senses of problems
of practice and ways to work on them. Just as in teaching elementary mathematics, where our goal is to engage students in
significant mathematical inquiry, a reprecentational context for learning to teach: grows out of our conception of teaching practice
as inquiry. We want to provide a terrain in which teachers can explore and investigate as well as acquire tools for their
investigations (., decper understandings of mathematics, new perspeciives on children as learners, new ideas about curriculum
and the tescher’s role). Hypermedia technology is promising for the design of such a representational context. This work with
Lampert has contributed significantly to my thinking about pedagogical reasoning in mathematics.
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Ameig my aims is that of developing a practice that respects.the integfity. of both
mathematics as a discipline and of children as mathematical-thinkers (Ball, 1990b). I'take
a stance of inquiry tovard my practice, working on- the basis of conjectures about students
and understandings of the mathematics; in so doing, both my practice and my understandings
develop. This paper traces my struggles to éngage third graders in developing their
understandings of fractions. My deliberations about my téaching of fractions serve to
illustrate dimensions important to the pedagogical raasoning that underlies-the éngagement
of students in representational contexts.

1

The Construction and Use of Representational Contexts:
Pedagogic Contemplations on Fractions and Third Graders

What representational contexts can help third graders construct uséful and sensible
understandings of fractions? In deliberating about this, two concerns are prominerit: subject
matter—what students should learn about the territory of fractions—and learners—what
students already know and how they learn.

Rational numbers is a domain in which there has been considerable work and
detailed analysis (e.g., Behr, Harel, Post, and Lesh, in press; Behr and Post, 1988; Kieren,
1975, 1988; Nesher, 1985; Post, Behr, Harel, and Lesh, 1988). Among the analyses, some
agreement exists that fractions may be interpreted (a) in part-whole terms, where the whole
unit may vary; (b) as a number on the number line; (c) as an operator (or scalar) that can
shrink or stretch another quantity; (d) as a quotient of two integers; (e) as a rate; and (f)
as a ratio. Nesner (1985) also includes fractions as representations of pre¥abilities.

In my journal, I worked on a conceptual map of fractions—ike constructs entailed and
the connections between fractions and other important mathematical ideas. As I considered
the multiple senses of fractions, the relations between fractinns and division, multiplication,
measurement, functiors, probabilities, numeration, and so on, the complexity of the topic
emerged. As Ohisson (1988) observes:

The difficulty of the topic is . . . semantic in nature: How should fractions be
understood? The complicated semantics of fractions is; in part, a consequence
of the composite nature of fractions. How is the meaning of 2.combined with
the m.caning of 3 to generate a meaning for 2/3? The difficulty of fractions
isalso . . . in part, a consequence of the bewildering array of many related but
only partially overlapping ideas that surround fractions {p. $3).

In thinking about the contexr:, I also examined the state and school district objectives
for fractions, The state objectives (on which my students ars tested at the beginning of
fourth grade) require students to be able to match fraction symbols with area models for
halves, thirds, and fourths—for unit fractions only—and that they be able to identify
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congruent parts. The school district’s objectives include recognition of 1/6 and. 1/12 but,
like the state objectives, they also deal only with-unit fractions. Students must:be-able to
identify the number above the bar as the numerator and:the -number below the bar as the
denominator and be able to multiply a whole number by a unit fraction (e.g., 1/2 x 6).
Students should also, according to these objectives, develop "an understanding of ‘the
meaning of fractions." Unlike the other objectives, this one is a mouthful, given the breadth
of meanings that can be assigned to fractions. In third grade, I currently focus on the first
three interpretations and applicatious of fractions:

1. part/ whole — the description of dividing a 'given unit (quantity) into some
number of parts:

¢ Taking 1 to be the unit and dividing it into some number of parts and
taking some number of those parts (e.g.,% ):

¢ Taking 1 to be the-unit, dividing it into some number of parts, and taking
some number of parts of that size (e.g, -2- )

B — N

¢ Taking some other numbur of objects to be the unit and dividing the set
of discrete objects into growps of some size (e.g., %of adozen)

9 0/6000/0008/000

2. linear coordinate: fraction as a number, as a point on the numberline

3. operator — fraction as something that operates on and shrinks or stretches
another quantity

shrinking: % x6=3 stretching: g x4=10

11




‘Proportional reasomng and intuitive use of odds axso come mto play as-we. explore

probability, Aware of the breadth of the topic of fractions, I.am: -cogriizant - -of ‘how-my.
choices -may limit or cofistrain-the horizons of their mathematwal trajectones "Uncertain

about mv decisions (¢f. Floden and Clark, 1988), these are open to ongoing. reoonsxderatlon ‘

and revision.

In addition to contemplating:the oontent, T also: consxderet’ what mne-year-olds may

have previously encountered about fractions—in* schiool-and out. My famlha.nty with-the
district curriculum and with a range of curriculum ‘materials told me:that; in ‘school, they
would likely have had limited experience, consisting primarily of shading predivided regions,

such as:

Shade 112 Shade 1/3

They probably had not had any experience dividing regions the:selves and it was. quite
possible that they would have had no experience with any non-unit fractions (i.e., fractions
with numbers other than 1 in the numerator—2/3, for instance). Possibly they would have
examined fractional parts of discrete sets, for example:

0000000
O00CO0O000O0
Draw a ring around half of the balis.

The fractions examined with discrete sets would probabiy have been halves, fourths, and
possibly thirds. I was quite sure that they would not have dealt with anything other than
unit fractions: that is, they probably had not had to figure out Low many balls were in two-
" thirds of the set.

I'also considered what I had learned about my students’ ideas and thinking from our
work in related topic areas, such as probability. .In that context, the students had not
formally quantified probabilities as fractions, but they had compared the likelihood of
particular events. For example:

12




- From which cup'is it more likely-to pull-a-green chip?

2 green chips 3y zmn chips

2 yellow chips. 4 yellow ctups
Thinking about this problem did entail proportional rcasomng. When I designed it, I was
keenly aware that it would simultaneously push the childfen and help me learn about their
intuitive fraction knowledge. Problems such as that are deeply useful to me as I wend. my
way across the terrain of third-grade mathematics with-a particular group of learners (cf.
Lampert, in preparation).

I keew in this case that the problem had the potenual to press the children to
consider the numbers of both green and yellow chips in order to answer a question that
appeared to be ouly about the green chips. Without répresenting the probability of pulling
out a green chip from either cup, what was key was recognizing that the answer lies .in
paying attention to the ratio of green to yellow chips in eéach cup. T had made notes in my
journal about the ways in which different children reasoned about problems such as this.
Some students, for example, reasoned that pulling a yellow chip was more likely from A than
from B because "there are more yellows than greens in cup B, so yellow is more likely than
green, but in cup A they are equally likely." Some students’ patterns.of reasomng did not
consider the multiplicative structure of the problem and argued: that it was more likely to
pull a green chip from cup B because there were three greens chips in cup B but only two
in cup A.

During the probability unit, students had repeated expenence with such questions and
arguments, although no effort was made to record probabilities symbolically. Thus they
never talked about the probability of pulling a green. chip out-of cup B as 3/7. Still, our
work in this area informed my understanding of the students’ proportional reasoning in ways
that were helpfui a5 we began our more formal foray into fractions.

Beyond school, I also reflected on what I'knew about their out-of-school:experiences
with fractions. They likely had everyday experience dividing things in Aalf but perhaps not

_ in thirds, fourths, or fifths. They probably had experience with money—especially quarters.

Most would be comfortabie. telling time to the quarter and halfhour. ‘Many would.have
used fractional cup measures when baking or cooking. Across-these contexts, I suspected
that their concept of unit would be strongest:with moriey, where they would know that a
quarter was 25¢, a half dollar, 50¢,-and a whoie dollar, 100¢. With money, they understood
tnat there were four quarters and two ‘half doltars in one dollar.

With time, I was less certain what they understood explicitiy. Even if they were
familiar with quarter past, quartcc to, and half an hour, many did not know how_many
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minutes there were in a quarter hour or a half hour. Nor was I certain they would know
why we speak of quarter hours, that is, that an hour has 69 minutes and ‘that:a.quarter of
an hour is called a quarter because it is 15 minutes, which is 1/4 of 60 minites. “From
baking experiences, I knew that with measuring cups, the children used "quarter” or "third"
or "half* as names for the different size cups, rather than as proportional or relational terms.
For the most part, they did not know to expect that there would be four quarter-cups in a
whole cup.

What did I know about my third-graders’ understandings based on these experiences?
I saw that their fraction knowledge was scattered across a.range of in- and out-of-school
contexts, their understandings situated in particular uses (Brown, Collins, and Duguid, 1989).
Most also had some generalized understandings. For example, their understanding of one-
half tended to be quite robust: they were able to consider both one-half of a whole unit and
one-half of a set. Many were able to locate 1/2 on a number line and most could record
something like 1/2 to represent one-half. At the same time, many of them also generalized
one-half to apply to any part of a whole. Harooun,® for instance, when working on the
problem, "How much can each person have if there are four people trying to share five

brownies equally?," offered additional evidence of this way of thinking. He drew four
people:

0000

and five brownies

Ooocaao

He explained that he divided each brownie in half and gave everyone a half, which he
recorded as:

O0Q2O0

half half half half

He repeated this, adding another half to the pile of brownies for each person:

0000
half half half half

half half half half

‘All names used are pseudonyms and are drawn appropriately, to the extent possible, from the individual children’s actual

linguistic and ethnic backgrounds.
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Then he took the last brownie and divided it: int_q’*liit,le ;;i'eces": “

and recorded these "little pieces” as halve, too:

0000
half half “half half
half hicf half half

helf half half hslf

Harooun’s conclusion was that the four people would each get "three halves." In the
discussion, the other students agreed with Harooun’s solution. Some children disputed his.
labeling the little pieces halves. Eventually, there was consensus that, because he had
divided the brownie into four pieces, these were fourths. This seemed to be a new, but
sensible, term to the third -graders. Ihad seen little evidence that third graders | had anything
other than a fragile, schoolish knowledge of thirds-and fourths. Fifths, eighths; tenths, and
SO On, were basmlly unfamiliar and their-understanding of halves, thirds, and fourths did not
tend to set up the construction of other fractions. *Half* was more a quantitative habit of
mind than an-explicit concept. |

Their ways of thinking about number based on their immersion in whole numbers was '

another source. of insight for me. .Again, from my notes on earlier, mathematically related
work, T'knew: that- they assumed that the iumber line represented the:number system, a set

of -discrete points, that there-wece-no numbers between the dots. The next number after 1 -
was 2, and after:2, obviously 3. They:also were: in-the habit of thinking sxmply ‘of numbers

- as representing. quanuues "two" could:refer to two penclls, or two-shoes, .or two cookies.

As ‘we- worked on- mulnphcanon, they began to have experience with. essentially
multiplicative ‘units other than one—dozens. or weeks—for example. That "two dozen”
referred:to 24-objects was a difficult 1dea for-some of them, for until now; two had meant,
quite- snmp'y, two single things. When we began talkmg about: fractlons, they tended-—as
Harooun did above—~to speak only of the number of pieces, mespecnve -of the-partitioning
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units. By this way of thinking, some thought that 2/5 was more than 1/2 because there were
more pieces (i.e., two pieces shaded in 2/5 and only one in 1/2).

B B

Content analyses of the domain of raticnal .numbers {e.g., Behr and Post, 1988;
Kieren, 1988) and research on children’s thinking about fractions (e.g., Lefevre, 1986;
Larson, 1988; Mack, 1990; Tierney, 1988) gave me lenses for watching my students, cues for
listening to them. It was in working with the third graders, however, that the most crucial
issues of content and learning emerged for me. Looking at rational numbers from the
perspective of a nine-year-old whose familiar mathematical domain is being stretched and
transformed, I saw aspects of rational number thinking that I had not noticed before. For
example, I realized that making sense of unit fractions (¢.g., 1/3, 1/4) requires only one part
of the thinking entailed in comprehending fractions: To understand what 1/4 means, one
need only divide the whole into four parts. Non-unit fractons require complex
compositional thinking: 3/4 entails both dividing into four parts and multiplying the result
by 3. Irealized, then, that when children have worked only with unit fractions, they may not
be confronting the essentially compositional nature of fractions.

They had little experience making sense of the written notation of fractions. While
they quickly began to read fractions correctly, they were unsure about what they meant. For
example, Mei interpreted 3/4 as "make groups of three" and then take all but cne group
(i.e., 3/4 is one less than 4/4)

They also tended to have imagic (visual) rather than principled knowledge of familiar
fractions; for examiple, that 1/4 is this shape:

[

Even when we worked with the number line as a representational context for exploring
fractions, it turned out that some children conceived of one-fourth as a fixed unit of
measurement, like a centimeter, such that it would be impossible, for instance, to represent
fourths on this number line:

<& o o o ]

1 2 3 4 5

o
\"4

"Mack (1990) reports that fourth graders in her study were able, informally, to compare one-sixth to one-cighth. However,

when they ate presented with symbols and asked to compare 1/6 and 1/8, they invoked their assumptions about whole numbers
and said that 1/8 was moré—because 8 is more than 6. Here my third
?ur;iemton differed as well; this suggested that the “number of pieces® strategy led them to incorrect conclusions with non-unit

ractions.

graders weze being asked 1o compere fractions where the
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because one-fourth is this (apparently arbitrary) -iength:

4 -

Dividing a quantity into four equal parts has little to do with this way of understanding one-
fourth; the ﬁndcrstanding is more visual than ¢onceptual.

The ways in. which numbers furction.as scalars was also highlighted for me as I
discovered—through the studerts’ eyes—the essentially relational and referential nature of
fractions. With whole numbers, 5 may mean "five* if the refereut is one object but sixty if
the referent is one dozen., For children, at least, this idea emerges more prominently.as they
engage fractions. One-fourth may rsan 25 (as ir "one quartér of a.dollar”) or 4 (as in "one
quarter of a pound"). Third graders are able to reason comfortably with one-half (i.e., they
can think flexibly about 1/2 of a dozen, 3 dollar, a yard, one cookie); but their ideas about
other fractions assume fractions of one—or fixed units of some other size (e.g., for some
children, separating the idea of "one-quarter" from the.coin is problematic).

This came through most vividly to me one day when we were disc:ssing solutions for
the problem, "What is 1/4 of a dozen?" Several people arguzd that it had to be 4
(misconstruing the meaning of the 4 in the dencmisator).. Other saw that it was 3 and they
managed to convince the . st of ‘the class of their solition—except for Lindiwe. His
objection, as he voiced it, was, "How can 3 be one quarter of u dozen when one-quarter is
just a little piece?" and he went to the board and drew:

D

Lindiwe’s misconception underscored my seiise that, for some nine-year-olds, in-spite of the
fact that they ofter do get the right answers on school fraction tasks (e.g., "Shade one-third"),
their understandings of fractions may not be principled, but are based instead on
remembered images. For Lindiwe-~and for some of his peers—the little wedge is one-
fourth.®

The Joint Construciion of the Representational Context for Learning Fractions
In nyy struggles to create and- orchestrate fruitful representational ‘contexts in-which
my students could explore mathematical ideas, I have come to see tha: representational
contexts are co-constructed and developad by members of the class. Studerts enter the

’mukﬁmﬂdtodmdrensvimalappmchtogeometﬂrobjew. Squares are :jpically not permiited in the category of
rectangle, for rectangies must have "two long ani? tvo skinny sides’--cxactly what tisy have seea in workbooks.
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representational context that the teacher has set up' and, in dealing with a specific problem,
they generate alternative ways to represent or check their understandings. - Together,
students and teacher must develop language and conventions that enable them to.connect
and use particular representations in situations. They must also develop ways of reaching
beyond and across specific situations to abstract and generalize emergent understandings.
The representations are tools to be wielded in mathematical investigations—in framing and
solving problems, in making and proving general claims. The tools themselves are
sharpened and developed through these processes. Students also sometimes invent or
introduce representations independently.

The following case from my teaching of fractions illustrates this joint construction of
the representational context. My work with my students over this is also a good illustration
of the pedagogical dilemmas entailed by the horns of Nesher’s ( 1989) dilemma: that, on one
hand, students must construct their knowledge through inteaction with the environment and
that, on the other hand, teachers are responsible to help students develop particular
mathematical ideas.

As we were moving from division toward fractions (on a voyage that parallels the
emergence of fractions in the history of mathematics), I presented the class with the
following problem: .

You have a dozen cookies and you want to share them with the other people in your

family. If you want to share them ali equally, how many cookies will each person in your

amily get?

I conceived this problem as a thinking space in which I hoped to stimulate students to
develop several key understandings of fractions. I used it on a cusp between an extended
period of explicit work on multiplication and division (which had involved fractions) and the
beginning of some direct work on fractions (which would continue to involve multiplication
and division). The problem involved the partitive interpretation of division (forming a
certain number of groups) and would produce multiple solutions.

For some size families, there would be cookies left over which could be divided
further. Based on what I knew about the families of my students, I realized that we could
encounter fifths, sevenths, and probably both halves and eighths. I also knew that students
would probably be inclined to divide the leftover cookies, but would not necessarily know
what to call the pieces they produced. Still, the children would probably see fifths and
halves as clearly different in amount, hopefully motivating a need to name pieces in
meaningful ways. I anticipated, in short, that this problem would launch us into an extended
exploration of fractions. '
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First we had figured out how many cookies everyone in my family—with four
members—would get. Then the students worked independeatly or in pairs or threes to
figure out how the dozen cookies would work out in their families.

I heard some discussion about whom to count as a member of one’s family. Keith
wondered if he should count his about-to-be-born baby brether or sister while Riba decided
not to count her new baby sister ("She can’t eat cookies!”). Sean noted that "my dad doesn’t
like cookies" and did not include him. I was also uncomfortable as I overheard some
students questioning other students’ counts. Mei asked: Lucy, "Who’s the fourth person?
You only have three people in your family." Lucy, matter-of-factly, respended that she was
counting her mother’s boyfriend who was living with them. Someone else challenged
Lindiwe’s counting his father since his parents were divorced and his dad was currently living
in Washington, DC.

These conversations seemed intrusively personal and I found myself questioning my
decision to contextualize the problem in terms of families. I had done this because the
divisor would vary nicely among the students, allowing for a range of interesting solutions,
some simpler than others. I knew we would end up discussing division of 12 by 2, 3, 4, 5,
6, and 7—and that 5 and 7 would lead us into fractions: my destination. This was exactly

where I now wanted to move from our work with division and multiplication. But, as I

listened, I questioned my choice, for the goodness of a representational context depends on
its social and cultural appropriateness as well as on content and learning factors. I decided
to discuss the issue with the class the next day—to ask them what they thought about the
problem and the interactions that surrounded it. ‘

In this discussion the next day, many children said that the problem seemed okay to
them, that they had not minded the questions that came up around it. Betsy, however,
empathized with how some students might have felt: "Well, for some people I think it would
be sort of being nosy, because if somebody really missed their dad and they didn’t want
people talking about it, that would make them feel even sad or something like that, so it
might not be such a good idea.” Tory agreed. At this, Lindiwe spoke up and said that many
people kept arguing with him, saying that he only had four people in his family and he kept
explaining that he was counting his dad. I asked how he feit about that and he said that he
liked the discussion of the problem but that he thought people should let him decide whom

" he wanted to count in his family: "I think that people shouldn’t really be saying how much

you have in your family. They don’t know because they’ve never been to your house. So,
they shouldn’t really tefl you stuff that they don’t even know." After listening to their
comments and thinking about the problem myself, I thought I would not be inclined to use
this problem again—at least in this particular context—for it seemed too intrusive and
potentially personal despite the fact that the problem had both believability and significance.

19

N,
-




After I posed the problem, I had walked around the room, listening and watching.
Most children were working in pairs or threes. A few were working alone. During this work
period, I try to learn how different children are thinking and how they are interacting with
the representational context I have framed. I ask questions, sometimes playing devil’s
advocate, sometimes pressing for clarification, explicitess, or depth. Sometimes I encourage
them to confer with a classmate. Sometimes I provide a piece—either information or a
Question—to spark or spur further thinking. This phase of the class-period is crucial to the
joint development of the representational contexts in which we are working, for it is a
primary source of information about wkat the students are thinking and how they are making
sense.

Cassandra, with five people in her family, was working a¢ the chlkboard and was
eager to show me her work on the problem. Adding lier own representation, she had drawn
a chart as a tool for and display of her reasoning:

Ch | C I J | P I Ce
l l l l '

The letters in the columns, she explained, were the first initials of her family’s names. Then
she distributed 10 of the cookies by making hash marks across the columms until each
member of her family had two hash marks, representing two cookies.

Ch

c

J

P

Ce

Cassandra:  Um, I would have 2 cookies left over so I figur>d what I would do with those
2 cookies? I would split them in half or either just throw them away.

(She drew two circles on the board):

3




So here’s two. '\

She drew lines in the circles, cutting them first in-half and then in quarters'and described ) ;'
what she was doing: ' ﬂ
I cut, them in half and then in half again and so there’s four. , ;

i

AAYAR e
L\

But I nave 5 people in my family, (adding another line to each cookic) d
so there’s one more. z
_/

%

And Cassandra added two more lines for eaci person on her chart:

1]

{
Ch ¢ J P Ce .
| | | | |
| I i | i T
. /

| l z I I ;

™N
| | | | |

Then I asked how many cookies she would give ez.» person in her family, Cassandra
counted the hash marks: 1,2, 3, 4.

Cassandra’s solution was intriguing. On one hand, she got a close approximation of
a "right" answer-—(2-2/5). On the -other hand, she reported it as 4, counting pieces
irrespective of size. In most classrooms, Cassandra’s solution would be judged to be wrong.
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After all, her conclusion ir writing was 12 + S = 4. Even after looking at her cookie
drawings—which may, in fact, rzpresent 2-2/S—questions remain 2bout Cassandra’s intuitive
understanding of fractions. She realized that the five pieces (inside each of the #wo leftover
cookies) are not the same size. Did she mean them to be equal but just did not know how
to draw fifths properly? Dividing a circle into-five equal parts is no easy task. Or did
Cassandra not recognize that equal size is a crucial aspect of dividing something like cookies
equally? Was she focused only cn coming up with the same number of pieces?

A "number of pieces” frame makes sense in many integer-division contexts: sharing
a bag of different lollipops, a box of assorted pencils, a pile of books, or .a sack of marbles,
for example. In such cases, the collections would probably be considered to be divided

equally if each person got the same number of items. The idea that sharing a quantity < e

equally involves an equal division cf its mass arises much more prominently only in contexts
where items will be subdivided into fractioral parts. Thus, for Cassandra and ber
classmates, that fractions implied equal parts was not necessarily obvious. At this point, as
we began our work on fractions, the centrality of unit was not obvious either. Mack (1950)
reports similar results in her investigation of fourth graders’ informal knowledge of fractions:
Students focused on "breaking fractions into parts and treating the parts as whole numbers
rather than as fractions” (p. 28). That evening, I wrote in my journal: .

One interesting thing to me about her clever solution was that, contrary to what
Ive tended to assume, Cassandra did not seem to focus on the pieces being
"fair"—i.., equal in size. What mattered more, it seemed, was having the right
number of pieces. Is that an artifact of the representation? If she was dealing
with real cookies, would she deal with it in the same way? I remember some
arguments from last year’s class when the "number of pieces" frame dominated
so that 4/8 and 4/16 seemed the same to some people.

In class, after listening to her solution, I debated about how to respond to Cassandra.
Should I question her further about her solution? She was not at all dissatisfied with it and
it made compelling sense in many ways. Yet I thougtt ¥ saw an opportunity to respect hcr
genuine attempt to distribute 12 cookies among the five members of her family and, at the
same time, extend her thinking by helping her develop some new tools to accomplish that
goal.

I saw that the fact that the problem entailed cookies encouraged the use of a circle
representation—an unfortunate obstacle, since drawing equal parts inside a circle is
technically difficult. This difficulty makes it harder to determine whether a child intends to
divide the circle equally—and just does not know how—or whether the child is even
considering the importance of equal parts. I decided to adjust the representational tool and
suggested to her that we draw rectangular cookies. It would be easier, I said, to divide them
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up equally so that everyone would get the same amount of cookies. Because I .wanted to
make sure that the problem remained well-connected to some real situation for Cassandra
as we shaped the context together, we talked for a moment about kinds of cookies that are
shaped as rectangles: hermits, windmi:l cookies, and brownies. Then I drew: -

and asked Cassandra to divide up the cookie for her family. She drew four lines, counting
the now-equal pieces: One, two, three, four, five:

Cassandra wanted to call these pieces "halves." The terms we use for fractional parts is a
matter of convention, not invention (Lampert, 1990; Larson, 1988). Cassandra would not
discover, on her own, what to call her pieces. I told Cassandra that we call those parts not
"halves,” but, "fifths." Then I asked her if she could think of a reason why that made sense.
She quickly replied that it made sense because the cookie had been divided into five pieces.
I showed her that the way we write "one-fifth" looked like this: 1/5—again, conventional
knowledge. She said that made sense because we had divided it into five pieces and one-
fifth was one of them.

I asked Caszandra if she could divide up the other leftover cookie. She did this.
Then we talked about how much cookie someone would get if they got one piece from each
of the lefiover cookies. Looking at the two cookies that had been divided into fifths,
Cassandra realized that each person was to get 1/5 and another 1/5. Concentrating on her
new understanding of something called “fifths,” she appeared to be thinking with the symbols,
rather than from her pictures. Cassandra appeared to abandon her more conceptual,
pictorial approach and began thinking in a symbolic mode. Thinking of the denominators,
she began, "5 + Sis _." I prompted, "No, think about your picture. One-fifth plus one-
_ fifth" She paused to o think about this, and then said "two of the fifths.” Cassandra’s
inclination to rely on the symbols fits with Mack’s (1990) finding that fourth graders’
"isolated knowledge of procedures . . . frequently interfered with their attempts to give
meaning to fraction and procedures” (p. 27). Rather thar thinking intuitively about what it
might mean to add one fifth and another fifth, Cassandra switched over to thinking about
adding the numbers in the symbolic form.

I was thinking about what Cassandra understood and how we had togethcr shaped the
representational context, but Mei was tugging at my sleeve to come and see what she and
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Tory had done. I listened to their solutions, still gathering information about how the
children were working within the representational context. Our time was almost up. I could
tell from scraps of conversation that we were ready for a group discussion of the problem.
Ileft Cassandra, asking her to try to figure out how much every member of her family would
get now. '

The next day, I opened the group discussion of the problem by asking for volunteers
to give their solutions. Jeannie explained her solution for three people in a family; Maria
agreed with Jeannie’s answer and showed a different way—using a picture—to prove that
three people would each get four cookies. There was no disagreement; several students said
they agreed with both Jeannie and Maria.

I suggested that we next discuss solutions for two people in a family. Then we moved
on to five. I knew that, in addition to Cassandra, Riba, Daniel, and Sean had also been
working on solutions for five people in a family. Riba said she was still working on it, that
Cassandra should present her solution. I was curious in seeing whether and how the group
context would affect Cassandra’s current thinking about the problem. We had worked hard
at creating a classroom culture in which it was safe to try out an idea that you did not yet
have full hold of, that you were unsure about, that was fragile. Now in the middle of the
year, the students had grown “o be quite respectful of one another’s thinking and were
patient with stumbling explanations. They were also inclined to ask questions to understand
how a classmate was thinking before they suggested revisions or disagreed with an idea.

I wondered wkether presenting her solution to 12 + 5 would help Cassandra to
strengthen her understanding of the problem—that her thinking would be clarified through
what she would have to think about in order o explain her solution to the cthers and
through the questions others might ask. I wanted to see whether, with support from me, if
necessary, she could show what she had dons, and get the other students to appreciate the
thoughtfulness and sense of her solution. The complexity of the probler= and its solutions
would tilt the class toward fractions, the direction I wanted to head.

Cassandra went to the overhead and, lcaping over the first part of her solution (that
each person could get two whole cookies), she drew two circles—the leftover cookies.
Hoping to push her gently, I iniervened:

Ball: Cassandra, are you going to use your rectangular cookies?

Cassandra: Uhhuh . . . Okay, so alright—(and she backed :p to the beginning
of the problem and made the chart she had made on the board
when she was working alone earliery—here’s my sister, my brother,
my da¢ and my mom. Okay, and I have 12 cookies, so
(distributes the cookies, making green hash marks on the chart) 1,
2,345 1,23,4,5...




I have two cookies left over so what I do is draw two
cookies . . . I divide them, you all got two cookies apiece
so 1 here, 2, 3, 4. .

SPAS>

I debated: Should I let her pursue this, dividing the cookies only into fourths and
have other children argue with her? The group was able to work well 10 negotiate what
makes sense. But Cassandra would also often tenaciously maintain her. point of view: She
would also sometimes falter, erase, and abandon her presentations when & flurry of
questions arose. Wanting to both press her thinking a bit and keep:her at it, I decided to
support the new explanation instead: I was-curious:about what role presenting it to others
would have. I also wanted the idea on which-Cassandra.was verging to:become patt of the
group’s working knowledge. (Edwards and Mercer, 1989). I reminded Cassandra that she
needed five pieces, not four, and that working with rectangles was easier.

Cassandra: They each got two cookies (pause) draw the other two that was
left over from the 12... put five lines, so it ... here’s one
cookie there, put 2, 3, 4, and 5. Then the same here, 1,2, 5,4
andS5so...

Cassundra put two more hash marks under zach person’s column on her chart, but used
orange marker instead of green this time. These crange marks represénted the fifths as

25
30




distinct from the whole cookies, progress from yesterday’s work when 2-2/5 seemed, to her,
to-be 4.

Ball: So how much did each person get?
Cassandra: Two-fifths.

Ball: (pointing at the chart) What are those green marks? What kind of
cookies are those green marks?

Cassandra; Two whole.
Ball: Two whole cookies and the orange marks are—?
Cassandra; Two-fifths.

Ball: Two-fifths cookies. Okay. Comments and questions for Cassandra?

Turning the discussion over to the students is a typical routine in-our discourse. In
trying to help students develop the capacity to determine for themselves whether something
makes sense mathematically—rather than relying on the teacher or the text (cf. Lampert,
1989), I deliberately structure our discussions so that students respond to one another’s
ideas, comments, and solutions.

The other students seemed to think that what she had done. made sense. To press
the students’ understanding of the importance of unit, I asked why Cassandra didn’t say that
cach person would get four cookies—there were four hash marks under each column.
Temba said he wasn’t sure, showing me that this was not obvious to everyone. Tory said
that "they’re split in half-so that wouldn’t be four cookies because they’re not whole
cookies." Others nodded.

I was both pleased and concerned with Tory’s answer. On one hand, she was
recognizing that the unit was changing and that you could not count both whole cookies and
"half-cookies" as wholes: two whole cookies and two: pieces was not four. On the other
hand, she-was also still referring to any part of a whole as a "half" a common habit among

the third graders. I asked for commients on what Tory had said.
L Mei said that she agreed. I pushed: Did anyone have an idea why those little
orange hash marks weren't called "halves"? Lucy explained that halves were bigger than
fifths. My ears perked up, for the notion that fractions with larger denominators are greater
than those with smaller denominators (e.g., 1/8 is greater than 1/3) is common among
elementary students. I heard in Lucy’s assertion a space into which we could move more
deliberately, a place in which the class could begin to extend their explicit, conceptual
understanding of fractions. (Indeed, about two weeks later, two students brought forward
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the idea that "With fractions, the bigger the number on.the bottom, the smailer the piece,’
a conjecture that another student quickly and spontaneously illustrated with models of 1/2,
1/3, 1/5, 1/7, 1/9 and 1/15.) ,

It was. near the end.of class. Sean raised his hand. 'I think that.to: draw some
number of pieces—like. four—" and ne got up-from his seat and went to the ‘board. ‘He
drew:a rectangle. Turning td the class, e continued, "To draw four. pieces, you just draw
one less line—three.* And he drew three lines inside the rectangle. "Because if-you drew
four lines"--and he drew one more line—"you would have five pieces!. not four." I'asked
what others. thought about Sean’s.conjecture. Several peopls said that they agreed with
Sean, that they had found the same thing when they were making their drawings.

Betsy said she agreed, too. "And I have a differen} way to show it;" she said. She
picked up a pair of scissors and a picce of scrap paper. "This is a rectangle,” she said. "If
I make just three cuts, I will have four picces." She cut the pieces, carefully, and then stuck
them against the chalkboard with magnets.

People seeined intrigued, and some found her argument funny. But not everyone was
convinced that this would always work. Whether or not something was always true was a
question they had learned to ask when considering a mathematical generalization.
Consideration of Sean’s conjecture continued across several days, although many children
began using it as they constructed their drawings. When I asked Daniel to explain why his
drawing representer! fourths, he explained that he had drawn a rectangle and put three lines
init. Riba argued, one day, that Sean’s conjecture would always work because one line (or
cut} always gave you "an edge’—that is, the other side of the region you are cutting. A few
more were convinced by this logic. Iwas pleased that the children’s use of area models for
fractions had, among other things, generated opportunities for pattern finding and
conjecturing such as this. ‘

But difficult pedagogical questions about developing and structuring the use of
representations continued to pop up. A few days later, I was standing by Maria’s desk,
watching her work on the problem of the day. I.saw that she, struggling with the English
words involved, had made a series of pictures of different fractions: 2/3, 4/5, 6/10, 3/11).
She had drawn vertical lines inside circles:

Qé 6
5

10

I had noticed that other children had been making similar pictures, in spite of my
attempt to push them toward rectangular models when we discussed Cassandra’s solution to
the cookie problem. I thought hard about what to do with Maria and the others. I could

27

32




. N
N
‘
.
‘
¢
4
.
k-
A

see that the students were genuinely excited by these new numbers. The pictures were
helping them in figuring out one sense of what the numbers. means~—that is, according to
their wor: .g definition, that the bottom number told you how many parts and the. top
number how many "to take away." Contemplating their working definition helped-to focus
my deliberations.

The teaciicr is constantly in the position of having to listen to what her students are
thinking and understanding and, at the same time, keep her eye on the mathematical
horizon. Looking to that horizon, I could see that both the pictures and-the definition of
fractions were limited and problematic. These pictures did not divide equal parts. The
numerator does not always indicate how many parts to "take away" from a whole. But, I
realized, the children who were dividing rectangles were also, of course, not dividing into
equal parts. They said things like, "Pretend it’s equal." Such agreements were critical,
otherwise drawings would have been entirely impossible,

Were—or should—the cifcles be regarded differently? After all, dividing circles so
that the pieces are equal is much moye complicated than doing so for rectangles. Yet, as
a mathematical community, the students do need to agree on assumptions and. shortcuts of
language that facilitate communication, The students’ explanation of fraction symbols—and
what it suggested about their understanding of fractions—was also heading them for trouble,
soon, in déaling improper fractions. As one student wailed, in trying-to deal with 8/4, "if
you take something and divide it into four parts, you can’t take eight of them!"

When agreements within the discourse unknowingly (io the students) entail
mathematicai confusions or misconseptions, the teacher must be able to recognize them and
to deliberate about the trade-offs. I decided, for the moment, £5-let the issue of circles pass
and, instead, to urge directly the use of rectangles, saying that rectangles were "easier to
use." With respect to the students’ wu.king definition of fractions, T decided to.present the
students with improper fractior:, I'began with the simple problem, "Which is more--2,'4
or 4/2?" confronting them with a question that I thought would provoke a revision of their
working anderstanding of fractions. I chose 4/2 for the provoking example of an improper
fraction because I suspected’ that their robust intuitive. under,;f.tanding of -halves would
provide a semantic key for some students, Thinking about 4/2 as "four halves" was likely to
make sense and convincingly dislodge the impossible alternative—"divide something into 2
pieces and take 4 of them." Using thirds or fourths might not offer this same wedge for
their thinking, ‘

We wended our way from the initial division-of-cookies problem into a serious
exploration of fractions—as parts of wholes—including discrete sets, as numbers on the
number line, and as operators. My decisions about repretentation—which to introduce, and
how to structure their use, as well as how to respond-to and shape the representations that
the children brought-—remained at the heart of my deliberations about the work.
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Preparing Teachzrs-to Construct. Representational
Contexts for Teachlng Mathematics

Situations that mathematics teachers face—such. as Cassandra’s solution, Maria’s
circle pictures, or the group’s working definition of fractions—highlight the complexity. of
constructing and using -fruitful representational contexts- for help'mg students. _develop
understandings of mathematics. Tbe examples in' this paper spetlight the necessnty for
teachers to be able to hear and se:: mathematically what-students are thinking. ‘Teachers
need to have multiple lenses and tools with-which to deliberate gbout courses of action.
They need to recognize, for example, that although equally spaced: vertical :lines inside- a
rectangle yield equal-sized pieces, inside a circle they-do not. Teachers-need:to appreciate
the value of Maria’s xplorations through the drawing of different fractions and to think
about what might be gained—and what lost—if she were to work with more structured
materials (e.g., fraction bars).

Teachers need to be able to hear the fallacies embedded in a. definition of fractions
that states that the top number is the amount you "take away" and be.able to deliberate
about what to do to help learners expand and deepen their understandings. Still, no
answers, no certainties await us in deliberating about fruitful representations or their uses
(cf., Ball, 1988; Floden and Clark, 1988). In helping students learn to understand and
reason with fractions; justifiable decisions about representations—their construction, use,
and adaptation—must be the product of a process of reasoning that.can interweave deep
understanding of fractions, and géometry, and measurement with idéas about mathématical
reasoning and notions about nine-year-olds—what they understand-and how they learn, what
hooks them, what they might find exciting or interesting.

Current evidence about prospective and experienced teachers’ understandings,
assumptions, and ways of thinking about representation suggests that many do not focus on
these sorts of considerations. Evea as we become more sensitive in our understandings of
the range of teaching that constitutes good practice, and of the accompanying inherent
uncertainties and dilemmas (Floden and Clark, 1988; Lampert, 1985), we will need to
attend with increasing care to what it will take to help people who have been steeped in
traditional practice and conventional views of knowledge (Cohen, 1988) learn to teach

. mathematics for understanding.

What do we know about teachers of mathematics? 'I'here'has been a recent growth
in attention to and research on what prospective and experienced teachers know and
believe—about mathematics, iearners, learning, and teaching (c.g., Rall, 1988, 1990b, in
press; Borko, Brown, Underhill, Eisenhart, Jones, and Agard, 1990; Carpenter, Fennema,
Peterscn, and Carey, 1988; Leinhardt and Smith, 1985; Martin and Harel, 1989; Peterson,
Fennema, and Carpenter, in press; Peterson, Fennema, Carpenter, and Loef, 1989; Schram,
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Feiman-Nemser, and Ball, 1989; Schram, Wilcox, Lanier, and Lappan, 1988; Simon, 1990;
Thompson, 1984; Tirosh and Graeber, 1990). In addition to providing insights into what
they know and believe, these studies also begin to help us understand prospective and
experienced teachers’ representations and ways of reasoning. It is out of the interweaving
of what they know and care about that their selection and use of representation is spun.
What do they notice, consider, take into account? ‘What decisions do they make about
representation? These questions offer yet another critical perspective on the question of
what teachers bring with them to teacher education reiated to the teaching of mathematics

(Ball, 1988).

Two findings emerge consisténtly from these studies of teachers’ knowledge and
patterns of reasoning. One is that making mathematics fun and eng.ging is the central
concern for many beginning and experiericed teachers. Assuming that mathematics is not
interesting to most students, they think that their role is to find ways to correct for that. In
their study of eight prospective middle school teachers, for exampie, Borko et al. (1990)
found that making mathematics class fun was central to these teachers’ ;pedagogical
reasoning. These researchers report uncovering a "pervasive belief* among the prospective
teachers they studied that mathematics is inherently boring end hard to learn. In search
of games that would lighten the load for students, tha prospective-icachers justified their
choices most ‘often in terms of how they would motivate or engage students rather than
based on concerns for the mathematical content.

The prospective teachers whom we have interviewed {(Ball, 1988; NCRTE, 1988)
have also tended to be most concerned either with engaging students’ interests or with being -
direct and clear about the specific mathematical conte..l. In these studies, we interviewed
elementary and secondary teacher education students on five different university campuses.
The interviews were complementzd with questionnaire data on a larger sample that
included the sample of students who were interviewed. Like Borko et al. (1990), we found
that many of the prospective teachers relied heavily, if not exclusively, on concerns for
student interest: What will students find fun or interesting? What will they be able to
relate to? The prospective teachers’ focus on the learner was threaded with the assumption
that if childrea are heving fun or are able to "relate” to the material, they will learn.
Making the contexts for learning mathematics fun was a top priority for many, rather than

 the links between the mathematics and students’ thinking.

A second finding is that teachers’ own mathematical experiences and understandings
have not emphasized meaning and concepts. Although many teachers express commitments
to focusing on concepts and emphasizing reasoning, a sizable proportion find that their own
understanding of mathematics limits their ability te do so. Steeped in mathematics classes
that stressed memorization and rules, these teachers face the need to revisit and revise the
ways in which they leaned mathematical ideas and procedures. For example, Borko et al.
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(1990) report that the prospective middle school mathematics teachers-they followed talked
consistently about the importance of concepts and meaning. Yet, even after their math
methods course, they had trouble explaining why certain procedures, such as division of
fractions or multiplicaticn of decimals, work. They stumbled in trying to model
mathematical concepts and procedures with concrete materials, pictures, or stories. When
they used concrete models or pictorial representations ia their teaching, they tended to use
such representations rivther perfunctorily and primarily as a means to keep and maintain
students’ attention and interest.

Like the prospective teachers interviewed by Borko and Brown (1990) and their
coileagues, our prospective teachers’ representations were also influenced by their own
understandings of mathematics (e.g, of fractions, division, place value, area). Many of them
were unable to unpack the conceptual underpinnings of the content, even when they
completed teacher education. They also tended to continue to conceive mathematics as a
body of rules. For exampl- at the conciusion of their studies, 69% of the elementary
teacher candidates (z = 83) across our five sites were unable to select an appropriate
representation for a division of fracti:-ws expression (e.g, 2-1/4 + 1/2) from among four
alternatives. And only 55% of the 22 secondary teacher education students—mathematics
majors or minors—were able to select an appropriate representation at the end of their
program.

Although these prospective teachers’ responses revealed that they, too, had come to
value manipulatives, and pictures, and diagrams, they were often unable to make use of
these materials because of the thinness of their own mathematical knowledge. When asked
what made representing division of fractions difficult, these teacher education students
commented that it was hard (or impossible) to relate it to .eal life because, as one said,

s "you don’t think in fractions, you think more in whele numbers " Another r2marked, I can’t
think of anything in the real world where you can divide by a fraction." Their stumblings
were painful 2t times as they struggled to maiie sense using a mathematical background
that had been "directed," as one student said, at getting the right answer, not at
understanding why. Scveral commented that they didn't "like" fractions.

Studies of expecrienced teachers show that, as with prospective teachers, their
assumjptions about learners and ‘their understandings of mathematics aiso shape the

* representational contexis they create (e.g, Ball, in press; Heaton, 1990; Leinhardt and
Smith, 1985; Peterson, Fennema, Carpenter, and Loef, 1989; Schram, Feiman-Nemser, and

Ball, 1989; Thompson, 1584), although "fun” is not always the dominans criterion. Like

. prospective teachers, many experienced teachers laud the use of manipusatives (Cohen, in
piess; Peterson, Fennema, Carpenter, and Loef, 1989; Scaram, Feiman-Nemser, and Ball,

1989). Often they justify the value of manipulatives by explaining that when students see

concepts concretely, they will remember them better (e.g, Cohen, in press; Schram,

31




>
4
3
i
>
3
3
3

AR AN R Gl W e O T e Mg WY AT N A AE TR

Al AT ISR e vt SRS IR T RS AR R T

l‘ [T SR AR AT A RARTAT RGART 4 RTVRLA T AT Ehe e xR AT TR RS AR

!

Feiman-Nemser, and Ball, 1989). Heaton’s (1990) case study of Sandra Better spotlights an
experienced fifth-grade teacher who eagerly gathered and used innovative activities. Her
purposes, however, were focused primarily on motivating her students, especially girls; the
mathematics for which the activities were ‘designed tended to be distorted in the process.

Upper elementary grade teachers do, in general, seem less -inclined to use concrete
or visual representations than are primary teachers (Ball, in press; Remillard, 1990;
Wiemers, in press; Wilson, in press). Experienced elementary teachers’ orientations to and
understandings of mathematics are also influential on the ways in which they represent
mathematics. Leinhardt and Smith (1985) report that, although the téachers they
imerviewed could produce algorithms, they often did not understand the underlying
mathematical concepts and relationships. This is not surprising when one considers ‘that
these rules were what was emphasized when they went to school. Teachers whose -own
understandings of the mathematics they teach is grounded in rules and algorithms tend to
focus on mnemonics and other devices to help pupils remember the steps, rather than to
create contexts for unpacking meanings (Ball, in press; Leinhardt and Smith, 198S;
Remillard, 1990; Wilson, in press).

Teachers already have orientations to their role, to the nature aud substance of
mathematics, to what helps students learn. They already have patterns of reasoning and
concerns that drive the kinds of decisions and compromises they make as they teach
mathematics. These patterns are often quite different from what might be entailed in trying
to interweave consideration of students’ thinking with close analysis of the content to create
productive representational contexts that can help students to develop mathematical
understandings. For instance, a focus on making mathematics fun will justify some
representations that are not grounded in meaning, that offer little opportunity for
exploration or connections. Similarly, an orientation to and understanding of mathematics
as rules and algorithms does not support a search for or use of conceptually grounded
representational contexts.

Analyses of teaching—such as the analysis explored in this paper of the pedagogical
reasoning underlying the comstruction of representational contexts—can help teacher
educators and teachers corisider the terrain of practice. Yet such analyses as this one arc

_ also insufficient. Changing one’s practice is not a matter of merely acquiring information

and techniques. Teachers wh -currently focus on devices that are catchy and that help
students remember steps and rules cannot learn to construct the kinds of representational
contexts explored in this paper simply by deciding to do so. Neither, even worse, can they
construct such contexts merely by being exhorted to do so. The task is complex and
uncertain. And taking teachess seriously as learners, considering where they are—what they
already know and believe and how they. reason, in relation to both content and
students—together with what they are trying to do is key for those who would recommend
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changes in the practice of elementary mathematics teaching. Moreover, we need to
continue to explore what kinds of experiences, supports, and structures can help teachers
develop and change their practice.

Conclusion :

Helping to develop new practices of mathematics teaching is no mean feat. Rusearch
can coniribute to our work in this area; five lines of inquiry seem especially important.
First, we need more theoretical and empirical research on representations in teaching
particular mathematical content. For a given domain or topic, we need to construct and
study an array of such representations and the contexts that might be structured for their
use in classrooms. We need to map out conceptually and study empirically what students
might learn from their interactions with them.

Second, we need to understand more about the processes of pedagogical deliberation
in teaching mathematics for understanding. What kinds of dilemmas and issues
arise—within particular mathematical content areas as well as more generelly?
Understanding what is entailed in trying to weave together concerns for mathematics with
concerns for learners can contribute to helping people learn to teach.

Third, we need to understand better the role of mathematical understanding in
teachers’ pedagogical reasoning. What kinds or qualities of mathematical knowledge
influence teachers’ capacity to hear and interpret students’ ideas and thinking? What kinds
and qualities of mathematic;} knowledge support teachers’ capacity to construct and use
fruitful representational cortexts?

Similarly, we need to learn more about the kinds and qualities of knowledge about
learners and learning that contribute to teachers’ ability to teach mathematics for
understanding. What kinds or qualities of understandings, what dispositions and skills,
influence teachers’ capacity to hear and interpret students’ ideas and thinking? What do
teachers need to understand and be sensitive to in constructing and orchestrating helpful
representations?

Final is the learning-to-teach question. What are al:2rnative ways of helping people,
whose entire experience with mathematics has been rule bound, often discouraging, and
unsuccessful, learn to feel differently about themselves and to develop the dispositions,

" skills, and knowledge necessary to construct and use fruitful representational contexts in

ways that go beyond miaking math class fun? How can they learn tp transcend their own
experiences with mathematics to consider other learners’ experiences of and with
mathematics?

I close this paper by returning the reader to the teacher’s seat. The following coda
retarns to and pulls up the paper’s central themes—of the interwoven threads of listening
mathematically to children, sometimes following and sometimes gently pressing them
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onward, and of the issues entailed in figuring out, constructing, and using representational
contexts in that process.

Coda’
Betsy : (working with Jeannie) How can we have this? (points to 4/2, vritten
on the board)
Jeannie: I don’t know.
Betsy : Four twoths?
Jeannie: We take something and divide it iato two parts . . . and take four of
those parts?
Betsy : I'm confused.
Jea@e: Me too.
Sheena : (walks up) Four halves, isn't it?

Betsy Yeah, four halves! Halves are two parts. So. ..

Jeannie: So we need two cookies and cut them each in half, then we have four
halves.

One, two, three, four. Twoths, I mean halves.

Overhearing this conversation, I realized the distance these girls had ¢ome. Beginning
with an intuitive, inexplicit, and visual notion of one-half that they could draw, use and
write, I had helped them travel into a new domain of numbers. Suddenly, looking back, the
familiar looked, for a moment, strange.”® One-twoth? But their comprehension of fractions
had evolved into principled understanding of part-whole relationships and the symbolic

’Thisistakmﬁummydlmomnhcubouttwo-md-a-wweeksofworﬁngfommyon&wim

‘%woddlkctoMJuﬁuRanmardforrcmaxﬁnghwthefwdutllzwddgnlylookedlikc'one-mh'isnotunm:c
mcwaysmmmwoun;dtﬂdmmgmﬂhcumqmmdmekunmmﬂnpmmhw For example, a child
may correctly sty % went’—until she discovers the "-ed” conjugation for the regular past tense. Then she is likely to go through
a phase of saying "I goed.” Simnady,mymmer,whenahemfour,ngddmlyumbk;ovﬁw'wco:mly,althouzhshe
had been able to do so for several months. Instesd, I caw her, pausing, snd then write "405"—an outgrowth of her new
undemmdingofpuccvaluet)mhMrephcodmwlier,routine.mognitionoftwo—cﬂ;i:numm
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notation for fraciional quantities. And, consequently, a "2" in the denominator was 6o
longer taken for granted: It had taken on explicit meaning. Ahead.cf ihese students stiil
lic many excirsions in the doain of rational numbers—into different interpretations and
applications of rational numbers, as well as arithmetic with the rationals. They are
launched now, with tools and ways of thinking that have built on and challenged the
informal understandings they held.
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